

Cloud Service Automation, (CSA), is a service that has been positioned at the
heart of many private datacentres. Customers using such cloud management
software, (typically those serviced by Hewlett Packard Enterprise), would try to
achieve a streamlined and standardized approach to their IT Infrastructure
delivery.

This Service Orchestrator approach would enable convenient, on-demand network
access to a shared pool of configurable computing resources, (such as networks,
servers, storage, applications and services). The inherent promise has been to
provide infinite flexibility along with proven implementations to match almost any
customer use case scenario.

Just a few years ago, it could easily be argued that CSA was years ahead of the
next best alternatives. The core advantages for a company struggling with
technical debt were compelling; single pane solution, graphical drag and drop
service designer, 1000s of out of the box integrations with other ‘proprietary'
enterprise software, simple to use End-user interfaces etc.

Unfortunately, the reality has been that many clients have been left both
overwhelmed with the additional technical debt and with a sour taste in their
mouths, from a tool-set that has never really delivered on its advertised potential
and promise of infinite flexibility.

HP CSA: The 9 Step
Survival Guide

By Alex Evans

Automation Logic

2017

The
Expert
View

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

For the most part, clients seem to expend vast amounts of effort to achieve what I
would refer to as, ‘the generic IaaS CSA offerings’, also known as ‘Server as a
Service’. Although such an approach would typically consist only of a Server OS
deployed onto some virtualisation technology.

The Service automation itself would, however, involve many layers of complexity.
Such complexity would include approval, change management, billing, capacity
planning, networking, IP/DNS address management, compute and storage
configuration, software deployment, server patching, HA and DR setup, AD or
Access control management. The promise of encapsulating these processes into
a, ‘Single Click One Stop Shop', solution, more often than not becomes the first
major milestone that most customers aim to achieve with the tool.

Many clients choose CSA to avoid vendor lock-in through its Hybrid
heterogeneous cloud capabilities. What they don't realise is they will likely be
locking themselves into a relationship with HPE, as the software is not something
which is easily adopted. Also, without in-house competencies in the toolset, this
would typically lead to spiralling technical debt.

I have worked with Hewlett Packard's Automation Product Suite for many years
and have worked in both a technical and architectural capacity. This has been
done on a multitude of datacentre automation solutions across Europe, and as one
might expect from a good consultancy / professional services company, the guys
harbouring the greatest experience are typically sent in to aid the engagements in
the worst scenario's. Yes, that's correct, much of my time working with the tool was
trying to bring projects out of an escalation scenario!

In this survival guide, I try to outline some of the biggest and most common
fallacies encountered in CSA implementations… and possibly some tips about how
to circumnavigate them.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

1. There’s only one way to skin a cat

Understanding the product capabilities
and limitations of CSA, OO, SA, DMA
are paramount to building good service
designs. I’ve seen too many clients
reinventing functionality which was
available natively from the tools
available, often simply because they are
not fully informed or even held some
unfounded prejudice against
understanding how particular features
worked. This could be due to learning

culture issues or general resistance to change?

Classic examples specific to CSA where this can be witnessed:

• Not using Resource Offerings due to a lack of appreciation for Provider
Selection mechanics.

• Using dedicated Components for Resource offerings to control execution order
due to a lack of understanding of how the Lifecycle Engine mechanics.

• Creating Operations Orchestrations operations to set variables, which might
have been defined on the flows.

• Using OO to implement something because OO can do everything.

• Using SA Ad-hoc Scripts and OGFS hacks when parametrized stored scripts
would work much better.

• Building custom external DB to store Parameters/CI in external Database when
CSA can hold service topological information.

• Defining user inputs when those values can be derived programmatically.

It makes a lot of sense to study the concepts guides from each of the tools, to
figure out what the common use cases are for them. I have been at countless
customers who have been sold HPSA as an OS Provisioning tool, and them not
realizing that not just the deployment but the entire Server Lifecycle is manageable
through the tool.

Many deliveries typically follow on from a Proof of Concept (PoC) phase, and
many customers are tempted to shim that into production for a quick Return on
Investment, but besides the obvious risks of stability and scale, they are missing
opportunity to explore functionality and do things the best way rather than the
fastest way.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

2. Datacentre Automation is Cloud Automation

Align your ‘business to the cloud' or
align the ‘cloud to your business’?
That’s a common conundrum in IT
organizations looking to optimize
their datacentre.

CSA is used, more often than not, for
private datacentre implementations,
and trying to introduce a single
solution to service the varying
delivery requirements for the entire
organisation will require a core shift in thinking. Processes which have been bent
to meet edge cases, with rules which were commonly broken to suit urgent
deliveries, all need to be aligned to conform. If you don’t make standardisation a
core competency of your IT delivery, then CSA is ultimately going to bring you little
value!

CSA through OO offers possibilities to automate practically any IT process and in
today’s modern organisations’ more and more processes involve IT. With new
processes being introduced at an exponential rate, legacy processes inevitably
become redundant faster. It’s crucial to not fall into the trap of investing time to
automate processes that could be avoided if the business operated differently.

As mentioned previously, the tool can automate practically anything, but that
doesn’t mean it automates everything easily. There are some trivial tasks which
can quickly evolve into complex challenges to automate effectively. Choosing to
not support these on a business level can instead save a lot of solution
customization and development pain.

Examples include:

- Migrating Servers from one network to another, instead look upstream at the
business processes that you can redeploy application and contented onto new
servers.

- Upgrading OS on a Service, instead order new Service and redeploy
applications and content using existing processes. (Invest time into Continuous
delivery rather than Patch management!)

- Instead of the user opening a change ticket before ordering from CSA, allow the
user to order in CSA and let the approval mechanism in CSA open their change
request.

- Let the user pick a Server T-shirt size rather than specific CPU/RAM… that way
the placement of VM’s and capacity management becomes much easier.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

3. Out of the Box Content is King

In the world of CSA, out-of-the-box content is
definitely not KING. Unlike many other
Enterprise platforms, the OOTB content from
CSA is likely to hinder you than give you a
head start. I’d go as far as recommending
CSA designs/flows as fantastic examples of
how not to build a solution. Here are a few
arguments to support such reasoning:

• The components which are shipped with

CSA in the component palette have various properties defined on them to
supplement their definitions. These properties have the most comprehensive
mixture of naming conventions I’ve ever witnessed in a single product… even on
the same component, you can find properties defined with 5 different syntactical
patterns applied. A better solution is to build your component palette from the
ground up and ensure everyone who is responsible for creating artefacts in the
toolset are familiar with the naming conventions agreed upon before being
granted access.

• Operations Orchestration has some superb out-of-the-box content and some

great freely available content which can be taken from the community. The
Operations Orchestration content pack shipped with CSA is, however, some of
the worst developed content available. The Integrations flows typically consist of
between 10 and 20 steps where they should be single operations. Merely
investing time to develop a more efficient CSA integration library will reduce both
the footprint and complexity of every flow invoked by CSA. Additionally, it
typically makes sense to have a common CSA wrapper flow which is
preconfigured to do standard CSA operations in a repeatable fashion.

• The software is pre-populated with a lot of provider types, component types and
category types, 95% of which you’re likely never to use. One could argue effort
expensed whilst trying to locate your artefacts amongst this unnecessary bloat
more than outweighs the benefits gained from saving a couple of minutes to
define these from scratch. To compound the annoyances CSA, in most scenarios
the tool prevents the deletion of out of the box bloat citing they are ‘Critical
Objects’… which begs the question why does the guys at CSA R&D think
Amazon AWS is a critical provider type for a private cloud?

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

4. You wouldn’t publish a book with typos in it.

The CSA R&D department really went the wrong way
here. Consider the following:

Before CSA 4.7 it wasn’t possible to deploy any
service instances without a published offering,
additionally, you couldn’t create an offering unless a
design is published… however, when you have
published a design you can no longer edit it.

The core issue here is that as a service designer you need to test/dry-run the
offerings in an unpublished state, often these designs may require small tweaks,
e.g. To reorder resource offerings, to rename/change parameters, to change
subscriber options or to update provider selection inputs etc. None of this is
possible without first un-publishing the design, which itself isn’t possible without
deleting the offerings, which is impossible without destroying active/pending
subscriptions! Now the real kicker, there’s a good possibility you have pending
instances as you’re still in the development phase and you wouldn’t be editing your
design if it worked already!

The truth of the situation is that most customers have a completely isolated
Production environment, and what publishing means to them is not setting some
published flag in a CSA design, but instead exporting it and pushing it into a
completely segregated CSA instance. Such an instance would typically follow a
DTAP process (Develop, Test, Acceptance, Production), and changes in the
service design would only happen in the Development instance of CSA. So, the
entire concept of design publishing is not only a huge hindrance to developers, but
it also brings zero value to many customers.

Today there are a few workarounds that you can be aware of to manipulate
designs in a published state:

• Resource offerings are not versioned. This means you can change them as
much as needed and any new service instances ordered which reference them
will inherit those changes… it’s not necessary to un-publish the design to make
those changes.

• Dynamic Query Options are also not versioned, so if a subscriber’s option
requirements change frequently or it’s not behaving correctly, then abstracting it
into a Dynamic query can allow testing of the behaviour in changes to the script
without republishing service designs.

• Offering creation and customization is likely to be a fixed repetitive task, but it
can be very time-consuming. If you have to generate a lot of customised service
offerings from a design, then the process can be fully automated through the API.
This includes creating tags and assigning the correct approval policy. Clients who
are able to run build scripts to regenerate Service offerings or destroy all
offerings can save a lot of time and effort rather than doing it manually through
the UI.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

5. You wouldn’t publish a book you can’t read!

Similar to the previous point about editing a published design, this is another
annoyance for those familiar with the tool, and it’s a case of CSA trying to be
intuitive yet failing miserably.

When a design is published, you may find a banner along the top saying ‘This
design has been published and is read-only’, as in the screen above.

A more accurate phrase might have been ‘The design is published and is not
editable, also half the contents are now hidden so you also can’t see what was
published either’

The things you won’t be able to see in a published design are the following;

- Subscriber option property bindings. (Which is great if the design your testing is
missing some bindings)

- Subscriber option property names.

- Dynamic Query input parameters

- CSA Component Properties settings.

- CSA Component Lifecycle Action Properties.

- Resource Binding Provider/Pool selection.

- Resource Binding Lifecycle

In credit to the CSA developers they have addressed many of these limitations in
CSA 4.7-4.8 with a Sequence Designer UI overhaul. However, for those tied into
earlier releases of the software the only real viable workaround is to create a draft
version of the same design.

Now is probably a good time to make sure your organisation has included a
naming convention for Service design which supports, identifying ‘Published/Draft’
versioning. Alternatively, if you’re the sole designer working on a service design,
then you might merely create a new version and increment the version number in
order to read the design.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

6. Subscription Management is a breeze, said no-one ever!

This is an issue that CSA has not
addressed well for a long time. Until
the elastic search functionality was
added, there was no simple way to
make a global search for a Service
Instance or subscription and even if the
Elastic search helps an MPP user
locate their subscriptions or those
shared with them, it’s still a real
challenge for a consumer admin or a

Service operations manager to manage the large estates.

What typically happens is that clients each define their own way to help locate
subscriptions. In the Service Operations page the out of the box experience is to
click through the organisations, then identify the right users, then only being able to
sort/filter on either name, design, status or date, which typically isn’t sufficient,
especially when you have 1000’s of active services, with perhaps many using
similar names.

So here are the workarounds to consider:

• Define a naming convention for the subscriptions…. You can use approval
mechanism to reject requests which don’t conform to convention. Standardising
the name of the subscription might make identification much easier.

• You can use an Action Flow to submit a modification request to Append/Prepend
a unique identifier to each subscription name. For a simple Server as A Service
this might be a hostname, for a cluster it could be a cluster name etc. The first
caveat to this workaround is that subscription names are only modified through
service requests, meaning the name can only be updated after the service
becomes active. The other caveat is that subscription name is a modifiable field
on which users may unintentionally modify without notice. (but again, when a
modification request is submitted, approval flows may reject it if the user is not
the service account).

• Use a community plugin for CSA such as this:
(https://github.com/alexevansigg/CSA-Enhanced-Operations) Which could
expose subscriptions and component properties in a more user-friendly
approach. (Disclaimer: I developed this plugin).

• Use a custom mail from the service deployment which contains all the
searchable keys you need and include hyperlinks to the correct
consumer/administration pages for the tool. (Yup … searching for a subscription
in a Mail client will be quicker than in CSA OOTB!)

http://www.automationlogic.com/
https://github.com/alexevansigg/CSA-Enhanced-Operations

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

7. We understand the Lifecycle Engine that’s why we don’t use it.

The Lifecycle Execution Engine could have been
made simpler, and it’s been a complaint from
many customers for a long time. The main issues
are that it’s misleading, and that specific sub-
transitions (e.g. PRE & POST) impact the
execution sequence in different ways, depending
on the context they are triggered from.

'Having worked with many
specialists/consultants dubbed as 'well versed'
in CSA, I have come to the conclusion that fewer than 10% have a strong grasp of
the sequence of which lifecycle actions will be executed. This figure drops even
lower if you consider 'solution architects', many of which, will have not have
invested sufficient time to evaluate the intrinsic mechanics of the engine.

In CSA 4.7+ the CSA team wanted to address concerns from the clients that the
lifecycle execution engine was too complex, the core changes introduced were that
they renamed ‘PRE’ and ‘POST’ transitions to ‘Before’ and ‘After’ phases
respectively, introduced a default view in the lifecycle editor which would hide
Before and After phases and abstracted the deployed phase to a new view called
User Operations.

Those were all welcomed changes but the lifecycle engine itself still applies the
same logic when building the order of execution as in earlier versions of the
product and below is an extract of a white paper from CSA41 which still today, is
the most thorough explanation I know of describing how it all work.

Source: HP Cloud Service Lifecycle Actions in CSA 4.10

CSA’s lifecycle engine references the service design to determine the execution
sequence when realizing a service instance based on the design and maintains
the lifecycle of the instance through its deployment, modification, and retirement
stages.

Every element (service component, resource subscription, or resource offering) in
a service hierarchy transits each state and sub-state in a sequential manner. In
other words, after all the elements transition to a stable state, the lifecycle engine
initiates the next state transition until the desired target state is reached.

Multiple factors influence the lifecycle action execution order:

• Parent/child relationships between service components

• Execution order of child service components (sequential or parallel execution)

• Execution order of resource bindings within a service component (sequential or
parallel execution)

• Execution order of actions within a lifecycle state or sub-state (sequential or

parallel execution)

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

• The current lifecycle phase

Consider this simple component hierarchy with a root, three children, and at least
one bound resource offering for each child. Child 1 has execution order 1 and child
2 has execution order 2.

Influenced by the factors listed above, the lifecycle engine will follow this execution
sequence during each of the major Deployment transition states of Initializing,
Reserving, and Deploying for this component hierarchy:

• PRE-TRANSITION Root

• PRE-TRANSITION Child 1

• PRE-TRANSITION Resource Offering 1 (RO1)

• PRE-TRANSITION RO2

• PRE-TRANSITION Child 3

• PRE-TRANSITION RO3

• TRANSITION Child 3

• TRANSITION RO3

• POST-TRANSITION Child 3

• POST-TRANSITION RO3

• TRANSITION Child 1

• TRANSITION RO1

• TRANSITION RO2

• POST-TRANSITION Child 1

• POST-TRANSITION RO1

• POST-TRANSITION RO2

• PRE-TRANSITION Child 2

• PRE-TRANSITION RO4

• TRANSITION Child 2

• TRANSITION RO4

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

• POST-TRANSITION Child 2

• POST-TRANSITION RO4

• TRANSITION Root

• POST-TRANSITION Root

The Key takeaways from the above extract are as follows:

- Component Actions are executed before Resource Offering Actions in the same
sub-transition (sub-phase).

- PRE-Transitions executed on Parent before Child.

- Transitions executed on Child before Parent.

- POST-Transition executed on Child before Parent.

- Component Siblings with a lower order execute entire phases (PRE-IN-POST)
executed before those with higher order.

- Resource Offerings with lower order execute sub-phase only before those with a
higher order.

- Initialising and Reserving Phase occur directly after Approval Process.

- Deploying phase occurs on the start date of the Subscription.

The lifecycle engine will follow this execution sequence during Retirement of
component and the following is the transition states of Un-Deploying, Un-
Reserving, and Un-Initializing for this component hierarchy

• PRE-TRANSITION Child 2

• PRE-TRANSITION RO4

• TRANSITION Child 2

• TRANSITION RO4

• POST-TRANSITION Child 2

• POST-TRANSITION RO4

• PRE-TRANSITION Child 3

• PRE-TRANSITION RO3

• TRANSITION Child 3

• TRANSITION RO3

• POST-TRANSITION Child 3

• POST-TRANSITION RO3

• PRE-TRANSITION Child 1

• PRE-TRANSITION Resource Offering 1 (RO1)

• PRE-TRANSITION RO2

• TRANSITION Child 1

• TRANSITION Resource Offering 1 (RO1)

• TRANSITION RO2

• POST-TRANSITION Child 1

• POST-TRANSITION Resource Offering 1 (RO1)

• POST -TRANSITION RO2

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

• PRE-TRANSITION Root

• TRANSITION Root

• POST-TRANSITION Root

Now there are some notable differences in how the retirement execution order
works in comparison to the provisioning phases with the key takeaways as follows:

- Component Actions Executed before Resource offering actions in same sub-
phase.

- Entire Phase (PRE-IN-POST) executed on child before parent.

- Component Siblings with higher execution order (e.g. 2) execute entire phase
(PRE-IN-POST) before those with lower execution order (e.g. 1).

- Resource Offerings with lower execution order (e.g. 1) execute sub-phase only
before those with a higher execution order.

Given all these rules it can be very confusing to get your head around. My
recommendation is to do the following when approaching a sequenced design:

- Define your components based on tangible objects, such as a Server, Network
Card, Disk or Application.

- Define your resource offerings, and place them on the components which make
the most sense. For example, an Offering to Manage Disk partitioning would go
on a disk component.

- Create a dummy action which simply returns success or error based on input to
dry run your resource offerings to check they execute in the correct order, and
perform the correct actions when cancelling a failed build.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

8. Pause on Provisioning… but we don’t want anything to pause!

‘Pause on Provisioning’ was added in the
CSA 4.2 and it’s a very powerful tool when
put to use whilst developing CSA
Services. The way it works is that if any
Process action encounters an error during
any of the provisioning phases (Initialising,
reserving and deploying) then instead of
triggering corresponding error sub-
transition on the failed lifecycle it simply
pauses.

Next, a notification (via SMTP) will be sent from CSA to both the Consumer who
ordered the subscription and to any Service Operations Managers who have been
identified in the notifier list for that organisation. The email informs them that the
subscription is paused and that somebody is investigating the issue.

Now when the Service Operations Manager receives their notification they can
look into CSA and inspect the subscription in it’s halted state, perform a diagnosis
through the event log or OO flow logs, then make an informed decision on the
following three choices:

1. Perform a manual intervention, typical use cases might be releasing new flow

content because of a bug, or extending capacity to a resource pool which was
exhausted.

2. Resume the Subscription. This will trigger the lifecycle engine to retry the failed
process action, and if it succeeds continue to the next action, otherwise the
subscription will pause again for a second round of intervention.

3. Cancel the subscription. This will then trigger the Failure Transition respective
to the failed lifecycle action. Then it will automatically begin to execute the un-
provisioning phases. The use case here would be the Service Operations
Manager has determined that the subscription is non-recoverable even with
intervention and must be rolled back.

Now, many would argue that pausing for manual intervention is not within ‘The
Cloud Mantra’ and would just build another service from scratch straight away
when something goes wrong.

The fundamental problem here is lots of stuff goes wrong all the time when your
‘Developing’ a service, and depending on the complexity of the design and how
many ‘Legacy’ systems you have to work with, maybe to get back to the point in
the same build could mean 1hr-2hr lead time plus 10-30mins of clean up activity.

The second issue with not using the Pause on Provisioning is that OOTB failed
subscriptions do not get rolled back automatically by the tool. So, if you have a
busy platform and eager users who keep ordering more when their subscription
fails, you quickly build a mountain of half-baked orphaned subscriptions.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

There are a few caveats which one needs to also be aware of when deciding
whether to use the pause feature:
1. It’s a global setting for an entire organisation. It would have been much more

practical to have it defined as default on organisation level, then be able to
override the pause behaviour for individual catalogues and then again for
individual offerings… not the case today.

2. Approval flows don’t pause if they go wrong, these flows are outside of
subscription lifecycle… so instead you need to ensure you have a timeout for
delegated approval flows configured, and notifications built into those flows.

3. As the name suggests 'Pause on Provisioning’ only applies to Provisioning.
Perhaps in an upcoming release, they might apply the same logic to un-
provisioning phase… after all who wants to release an IP address if the server
couldn’t be decommissioned.

Having considered the above limitations, I still believe it’s a great feature to enable
for development and test environments. In Production, where realistically stuff
shouldn’t be going wrong so often, pausing isn’t something you want to enable.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

9. Let’s just use System Properties for everything.

The possibilities to introduce/store properties inside
a CSA solution are vast, and it’s not surprising how
many times a property or variable is
defined/declared in an illogical location.

It could be in a flow when it should be read from a
component, or it’s defined on a Server Component
when its more appropriate on an NIC component,
or it’s relative to a specific provider, but instead it’s
derived based on subscriber options.

The below table attempts to address some

common scopes of variables and when they should be used.

Property Location Scope Usage

OO System Property Global Use when a property might
be needed by all/any flow
regardless of the design it
is incorporated into.

OO Flow Input Property Single Flow Use when the property is
specific to an OO flow
(typically CSA flows pass
UNIQUE IDs to CSA
artefacts as flow inputs
when invoking flows).

CSA Component Property CSA Component Use when a property is
relative to a component.
e.g. hostname on a server
component, disk size on a
disk component.

CSA Provider Property CSA Provider Use when a property is
relative to a provider. E.g.
A vCenter provider might
require a property which
describes the maximum
VM version it supports.

OO flow Output Property Single Flow When properties need to
be manipulated/merged its
simple to do the translation
in OO. Every step in OO
supports generic inputs
and outputs so purpose
build operations are not
necessary. E.g. storing

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

Hostname and Domain in
CSA component are easily
merged to a FQDN
component in OO.

Option Property Option Model These properties are
defined in the subscriber
option model and typically
bound to one or more
Component Properties.
Best to keep life simple
and use the same name for
component and subscriber
properties.

External Properties External There is always the
possibility that properties
consumed in the Service
delivery are sourced from
foreign CMDBs or
databases. Typically, an
assessment should be
made where the best
source of truth lies for a
property.

It’s quite important in CSA to understand where is the source of truth for data.
When you are integrating various management systems together and you have
complex dependencies of state, then a well thought out CMDB to represent the
entire estate can become paramount. OO flows on the other hand should be made
atomic with as many variables parametrised as possible making them both
portable and reusable.

http://www.automationlogic.com/

HP CSA: The 9 Step Survival Guide
www.automationlogic.com

Summary

So, the HPE (Microfocus) CSA suite has been around for several years now and
has slowly matured into a capable automation suite. Unfortunately, in its earlier
years a plethora of caveats, gotchas and Easter eggs have left customers
customising solutions beyond reason and loosing site of the true value delivered
through automation.

What is most apparent to me now is that the majority of issues I see are with
regards to the content which is created on the platform rather than the platform
itself. If I look back to several years ago most of my time was spent chasing
enhancement requests or product defects with the CSA core development team or
Support. Whereas now I’m shaking my head trying to understand why client
specific content has been developed in such a bad way. This article was written
with the intention of getting people to think about how they design content in CSA,
and while there are many reasons to migrate away from the platform, there are
many ways to squeeze just that little bit more usability out of it until that day
comes.

My Bio.
I’m a Senior Consulting Engineer at Automation Logic since May 2017 having
previously spent 7 years working for Hewlett Packard Enterprise championing the
Business Service Automation and their CSA Suite servicing clients across many
different sectors. Additional to Automation, I have experience core strengths
Software Development, Public Cloud Architecture and Business Intelligence.

http://www.automationlogic.com/

